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ABSTRACT 

As autonomous underwater vehicles (AUVs) are deployed in more complex operational 

scenarios (e.g., multi-vehicle operations or information gathering in cluttered littoral 

zones), accurate control of these platforms is of particular importance. However, the 

design of accurate controllers and these complex systems in general require accurate 

models.  

This research is focused on the identification of rigid body and hydrodynamic 

modeling parameters of the THAUS (a modified SeaBotix vLBV300) and the Hydroid 

REMUS100 AUVs. A hydrodynamic model is adopted that accounts for vehicle-specific 

properties, including symmetry and anticipated flow properties. An experimental setup, 

based on a quadrifilar pendulum, is developed to measure the moments of inertia of the 

vehicle. System identification techniques, based on Recursive Least Squares estimation 

with modifications for learning the parameters of dynamic systems, are applied in two 

approaches to learn the parametric models of the platforms: an individual channel 

excitation approach and a free decay pendulum test. The former is applied to THAUS, 

which can excite the system in individual channels in four degrees of freedom. These 

results are verified in the free decay pendulum setup, which has the advantage that the 

approach is independent of the platform actuation. The latter test is also applied to the 

REMUS AUV. 
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I. INTRODUCTION 

Since its inception, diving operations have been closely related to the naval 

profession with operations like the recovery of sunken values, inspection and 

maintenance, and the search navigation of underwater barricades. It is also considered to 

be one of the most dangerous habitats for humans due to hazards such as decompression 

sickness, exposure to very high pressures, limited diving time, limited visibility, etc. 

Recent technological developments have eased the burden on divers for safer and more 

efficient operations. One example is the introduction of underwater Remotely Operated 

Vehicles (ROV) aiding or even sometimes replacing the diver in underwater operations. 

The natural extension of this technology is the introduction of automated capabilities for 

performing complex underwater tasks, potentially with humans-in-the-loop, to 

accomplish more complex tasks through the collaboration of robots and humans (see 

Figure 1). This requires these vehicles to share its operational environment with human 

divers as well as operate close to other objects (e.g., the sea floor, vessels, and other 

underwater vehicles). This in turn requires precise control at a level not needed before, to 

operate safely in an environment with large disturbances and where sensing and 

communication is inherently limited. That is when accurate modeling is needed. 

 
Figure 1.  THAUS AUV during diving operations at  

NASA Aquarius Reef Base. 
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A model of the dynamics of the underwater platform is needed for accurate 

control and state estimation. However, obtaining accurate models of underwater vehicles 

is extremely challenging due to hydrodynamic effects such as damping and added mass 

coefficients for all six degrees of freedom. These effects are highly coupled and hard to 

calculate analytically or computationally. As will be shown, general parametric models 

contain more than 200 unknown parameters that must be calculated or estimated. This 

problem is further complicated by the fact that vehicle configuration changes result in 

changes in the dynamic model. Thus, methods to capture these models through 

experimentation are desired. 

The focus of this research is developing experimental methods to obtain the 

hydrodynamic parameters that model the motion of two classes of underwater vehicles, 

using inexpensive, flexible methods. 

A. LITERATURE REVIEW 

Several steps must be addressed in order to obtain an accurate model of the 

dynamics of the AUV. First, a parametric model of the rigid body dynamics under 

hydrodynamic forces is needed before the model parameters can be estimated. The mass 

and inertia properties, in addition to the hydrodynamic coefficients must be identified. 

Several techniques exist in order to address this task. 

Parametric models that capture the dynamics of the vehicle are needed in order to 

design, simulate and validate controllers. A general model of the dynamics of a rigid 

body moving in the presence of hydrodynamic forces has been well studied over the last 

25 years, as presented by Fossen [1]. This model captures all the elements of the six 

degrees of freedom (DOF) motion of the body. The presented generic model can be 

applied to all marine vehicles, surface or underwater. These generalized equations of 

motion (EOMs) can be significantly simplified depending on the properties of the rigid 

body. For example, Prestero [2] and Doherty [3], while working on the REMUS AUV, 

assumed symmetry in the xy-plane and xz-plane, yielding a particular set of EOMs that 

can be applied to the REMUS. Similarly, Weiss [4] and Eng et al. [5, 6] assumed three 

planes of symmetry (xy, xz and zy) and uncoupled motion for the open-frame hovering 
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AUVs, eliminating some of the terms that were still present on the simplified version 

Prestero and Doherty used. 

With this parametric model that captures the dynamics of underwater vehicles in 

hand, the next steps are the identification of the rigid body (mass and inertia) and 

hydrodynamic (added mass, fluid damping effects and buoyancy) parameters.  

For simple body shapes, a good approximation of the inertia properties of 

underwater vehicles can be obtained by assuming homogeneous distribution of mass and 

simplifying the shape of the vehicle [2, 4]. However, other methods are available that 

result in more accurate estimates. Computer-Aided Design (CAD) software is capable of 

calculating the moment of inertia of a rigid body [5], even when it is composed of 

different materials. Although it is a good approach, the result will only be as accurate as 

the CAD model reflects the reality. Some components may be more complex (e.g., a 

sonar or other sensors) for which accurate CAD models may not exist, resulting in 

inaccuracies. Additionally, a change in the configuration of the vehicle (e.g., a change in 

the sensor placement) will result in a change in the moment of inertia, which would 

involve updating the CAD model to obtain the new result. For vehicles like the THAUS 

AUV, for which versatility is key feature, this is inconvenient and lowers overall 

confidence in the estimated inertias. Experimental methods can be used to identify these 

same properties. Particularly, using multi-filar pendulums [7, 8], the moment of inertia 

about several planes principal axes can be found, due to the relationship with the 

pendulum’s period of oscillation. This technique will be further explored in this work. 

When rigid bodies are submerged in a fluid and accelerate (i.e., forced motion), 

the inertia of the surrounding fluid must be overcome as well as the inertia of the vehicle. 

This is known as the added mass component of the hydrodynamic model. This property is 

normally treated as a function of the geometry only [1-6, 9-12], including in the author of 

this thesis1. Keeping with this convention, two options for the identification of these 

properties exist: calculation or experimental identification. Doherty [3] used Blevins [14] 

and Newman’s [15] empirical equations of the added mass of a cylindrical body to 
                                                 

1 A recent study suggests that the added mass is additionally a function of the acceleration of the body 
through the fluid [13]. This should be explored in follow-on work. 
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calculate the axial and crossflow added mass, which is a good approximation for the 

REMUS AUV. Eng et al. [5] used the specialized CAD software WAMIT 

(WaveAnalisysMIT) to calculate these coefficients. Again, these methods are only as 

good as the CAD models that exist for the platforms. As will be shown later in this 

chapter, the THAUS AUV has very complex geometry, for which these techniques 

cannot be readily applied with high confidence. The experimental identification of the 

added mass properties requires treating these coefficients as unknowns and applying 

system identification techniques to obtain them [4, 6, 12]. This is the method that will be 

explored in this work. 

Similarly, the drag, or damping, coefficients can be calculated or experimentally 

identified. Due to the fact that not all underwater vehicles have body shapes that allows 

this calculation [3], experimental identification is the preferred method [2, 4, 6, 10-12, 

16]. This becomes a challenging task due to the highly coupled nature of the damping 

effects, especially when dealing with open-frame vehicles like the THAUS AUV. 

As mentioned, the experimental identification of these parametric models requires 

the estimation of the various unknowns from measured vehicle responses. Several 

methods have been explored for the experimental identification of hydrodynamic 

coefficients of marine vehicles. Tow tank testing has been around for a long time [2, 16] 

to identify these coefficients. The appropriate use of the facilities and equipment has been 

used to successfully identify the coefficients in the six DOFs. However, as with the 

moment of inertia, a change in the configuration could change these properties 

significantly. Furthermore, a tow-tank facility is not always available. A more convenient 

approach is to use the actuators of the platform itself to excite the vehicle [4]. However, 

while this is possible for vehicles like the THAUS, the REMUS AUV cannot excite all its 

DOFs individually by using just its actuators. As an alternative, constrained pendulum 

motion has also been used to excite scaled models and identify the desired parameters 

[6]. Yet, as the vehicles become more versatile, allowing customization for different 

missions, new identification methods must be explored, like online identification [4] and 

adaptive methods [12].  



 5 

The identification task consists in fitting a mathematical model to the obtained 

vehicle response data. Regression tools are widely used for this purpose, such as the 

Least Squares Estimation [6, 9, 11, 12], where the data is processed after it is obtained 

(i.e., off-line). A more versatile approach is the use of recursive tools, such as Recursive 

Least Square Estimators, Gradient Estimators and Neural Networks [4], which estimate 

the parameters of the model as new information becomes available (i.e., online). 

Additionally, adaptive control techniques are available [12] that can react to changes in 

the payload in order to tune the existing model, further leveraging these on-line model 

learning tools. There are additional considerations in order to use the latter methods, like 

the richness of the input signal [4, 17] that need to be address to get accurate results. This 

methodology will be explored further in this thesis. 

B. PLATFORMS  

The model learning techniques developed in this research will be applied to two 

different vehicles: the THAUS AUV and the REMUS AUV. These two platforms are 

fundamentally different, not only in their dynamical capabilities, but in the mission they 

are used for. 

1. THAUS: Tethered Hovering Autonomous Underwater System 

The THAUS AUV is a modified vLBV300 miniROV, manufactured by 

TELEDYNE SeaBotix Inc. in San Diego, California. A tether transmits power and 

information to control the vehicle, which can be controlled via a joystick interface. Figure 

2 shows an example of the configuration of the vLBV300. 
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Figure 2.  Standard SeaBotix vLVB300 miniROV  

The standard model comes with six brushless DC thrusters, four of them placed to 

control planar motion and whose angles can be manually changed prior to operation, and 

the remaining two are fixed to control vertical motion. This configuration controls the 

vehicle in five degrees of freedom (DOFs): surge, sway, heave, roll and yaw, although 

only four through the joystick interface (surge, sway, heave and yaw). The versatility of 

the vehicle allows the use of a wide arrange of sensors for different applications, 

including a 650 line high resolution camera with tilt control in 180 degrees, side cameras 

and sonars. For physical intervention, the vehicle comes with a grabber arm. Table 1 

summarizes the general characteristics of the vLBV300. 
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Table 1.   General characteristics of the standard vLBV300 MiniROV,  
from [18] 

Depth Rating 300 m 

Length  625 mm 

Width  390 mm 

Height  390 mm 

Diagonal 551 mm 

Weight in air 18.1 kg 

 

The Center of Autonomous Vehicle Research (CAVR) has been working on the 

automation of the vLBV300 by adding sensors capable of estimate the states of the 

vehicle: an Inertial Navigation System (INS), a Global Positioning System (GPS) and a 

Doppler Velocity Log (DVL). Additionally, the THAUS AUV has dual forward-looking 

sonars and a sideways-mounted microbathymetry sonar, allowing accurate environment 

mapping, feature-based navigation, and obstacle avoidance. Figure 3 shows the updated 

configuration of the THAUS AUV. A control interface has also been developed that 

allows fully autonomous operation of the vehicle, in addition to traditional tele-operation 

control. 

Due to its hovering ability, this vehicle is meant to be a diver aid, and it is also 

able to participate in inspection and mapping operations. 
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Figure 3.  THAUS AUV: Tethered Hovering Autonomous  

Underwater System 

2. REMUS 100: Remote Environmental Measuring Unit 

The REMUS is an underwater vehicle manufactured by Hydroid Inc. Its hull 

shape is given by the Myring hull equations [2], giving it a low drag coefficient for its 

diameter. Figure 4 shows the shape of the Standard REMUS AUV. 

 
Figure 4.  Standard Hydroid REMUS 100 

The REMUS AUV uses a single DC brushless motor to power a 3 bladed 

propeller and impulse the vehicle in the surge DOF. A summary of the general 

characteristics of the vehicle is shown in Table 2. 
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Table 2.   General characteristics of the REMUS AUV, from [19] 

Diameter 190 mm 

Length 1600 mm 

Weight 38.5 kg 

Trim weight 1 kg 

Maximum operating depth  100 m 

Endurance  8-10 hours for a typical mission 

Velocity Range Up to 2.3 m/s  

 

The AUV is designed to move very efficiently in the surge (forward-backward) 

direction and controls heading and pitch through control surfaces. As a result, the vehicle 

cannot control heave, sway, pitch, roll, or yaw independently. This is a fundamental 

difference between the THAUS and REMUS AUVs: while THAUS is a hovering 

vehicle, the REMUS AUV needs to use its propeller constantly. 

Due to its long endurance, the REMUS AUV is used for marine research and 

exploration. 

C. SCOPE AND OBJECTIVES  

The main objectives of the research are: 

• Derive a model that satisfies the dynamics of the studied vehicles. 

• Investigate experimental techniques to learn these dynamic models. 

• Experimentally identify the physical and hydrodynamic properties of the 

parametric models for each vehicle. 

To accomplish these objectives, the following tasks were executed: 

• Simplify the generalized equations of motion for marine vehicles. 

• Experimentally identify the mass and inertia properties of each vehicle. 
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• Investigate appropriate system identification techniques to learn these 

dynamic models. 

• Use the single channel excitation (SCE) technique to identify the 

hydrodynamic coefficients of the EOMs for vehicles that can 

independently excite motion degrees of freedom. 

• Use the free decay pendulum (FDP) technique to identify the 

hydrodynamic coefficients of the EOMs for vehicles that cannot excite 

motion degrees of freedom independently. 
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II. HYDRODYNAMIC MODELING 

Dynamics of rigid bodies is a well-studied problem. However, submerged bodies 

have some unique dynamic properties. This chapter will give the lector an inside on the 

modeling of submerged bodies. 

A. RIGID BODY MODELING 

The first step of the modeling task is obtaining the equations of motion (EOMs). 

This chapter will give an overview of the steps that this task requires. For a more detailed 

explanation, refer to chapter two of Fossen [1].  

It is desirable to derive the equations of motion from an arbitrary point located on 

the body-fixed coordinate frame to take advantage of the geometry of the vehicles. In 

order to simplify the EOMs, and also because the hydrodynamic and kinematic forces 

and moments are defined in this coordinate frame. Figure 5 illustrates the motion of an 

arbitrary rigid body. 

 
Figure 5.  Example of a rigid body motion 
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A reference frame for the inertial coordinate systems is needed. In practice, it is safe to 

approximate an earth fixed reference as inertial, since the forces and moments due to the 

motion of the earth can be neglected in most marine applications. 

1. Translational motion 

For a body moving in an inertial reference frame, its translation can be computed 

in a body-fixed coordinate frame as 

 0 0 0( ( ))G Gm v v r r fω ω ω ω+ × + × + × × =  (1) 

where, in addition to the vectors defined in Figure 5, f  is the forces acting on the body. 

The subscript o refers to an arbitrary placed body-fixed frame of reference. It is 

convenient to choose the origin of this frame to coincide with the body’s center of 

gravity, which allows equation (1) to be simplified to 

 ( )C C Cm v v fω+ × =  (2) 

where the subscript c refers to the body-fixed frame of reference placed to coincide with 

the center of gravity. 

2. Rotational Motion 

Analogously, the rotational motion of a rigid body can be computed in the body-

fixed coordinate frame as  

 0 0 0 0 0( ) ( )Gmr v vω ω ω ω+ × + × + × =I I m   (3) 

where m  is the moment vector and I  is the inertia tensor, which will be discussed in 

more detail in Section A of Chapter IV. By choosing the origin of the body-fixed frame 

to be the same as the center of gravity, equation (3) reduces to 

 ( )C C Cω ω ω+ × =I I m . (4) 

3. Vector Equations 

The above equations can be written in vector form to include the full six degrees 

of freedom of a rigid body. Let  
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0 1

0 2

0 1

2

[ , , ]

[ , , ]

[ , , ]

[ , , ]

[ , , ]

T

T

T

T

T
G G G G

f X Y Z
K M N

v u v w
p q r

r x y z

τ

τ

υ

ω υ

= =

= =

= =

= =

=

m

. 

Substituting these definitions into equations (1) and (3) yields  

 

2 2

2 2

2 2

2 2

[ ( ) ( ) ( )]

[ ( ) ( ) ( )]

[ ( ) ( ) ( )]

( ) ( ) ( ) ( )

[ ( ) (

G G G

G G G

G G G

x z y xy yz xy

G G

m u vr wq x q r y pq r z pr q X
m v wp ur y r p z qr p x qp r Y
m w uq vq z p q x rp q y rq p Z
I p I I qr r pq I r q I pr q I

m y w uq vp z v wp

− + − + + − + + =

− + − + + − + + =

− + − + + − + + =

+ − − − + − + −

+ − + − − +

  

  

  

 

 

2 2

2 2

)]

( ) ( ) ( ) ( )

[ ( ) ( )]

( ) ( ) ( ) ( )

[ ( ) ( )]

y x z xy zx yz

G G

z y x yz xy zx

G G

ur K
I q I I rp p qr I p r I qp r I

m z u vr wq x w uq vp K
I r I I pq q rp I q p I rq p I

m x v wp ur y u vr wq N

=

+ − − + + − + −

+ − + − − + =

+ − − + + − + −

+ − + − − + =

  

 

  

  . (5) 

These expressions can be compiled in a single equation of the form 

 ( )RB RB RBυ υ υ τ+ =M C   (6) 

where 1 2[ , ]T T Tυ υ υ=  represents the linear and angular velocities computed in the body 

fixed coordinate frame, 1 2[ , ]T T T
RBτ τ τ=  is the vector of forces and moments acting on the 

body, RBM  is the rigid body inertia matrix of the form 

 

3 3

0

0 0 0
0 0 0
0 0 0( )
0( )

0
0

G G

G G

G GG
RB

G G x xy xzG

G G yx y yz

G G zx zy z

m mz my
m mz mx

m my mxm m S r
mz my I I Im S r

mz mx I I I
my mx I I I

×

− 
 − 
 −− 

= =    − − −   
 − − −
 
− − −  

I
M

I

  (7) 

here 0I  is the inertia tensor with respect to the origin of the body-fixed coordinate frame 

and ( )S ⋅  is the skew-symmetric operator. For example let [ ]1 2 3
TA a a a=



, then 
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( ) ( ) ( ) [ ]
3 2

3 1 3 3

2 1

0
0 and 0

0

T
a a

S A a a S A S A
a a

×

− 
 = − + = 
 − 

  

.. 

Finally, ( )RB υC  is the Coriolis or centripetal matrix 

 

0 0 0
0 0 0
0 0 0

( ) ...
( ) ( ) ( )
( ) ( ) ( )
( ) (z ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) (z ) ( )

...
0

RB
G G G G

G G G G

G G G G

G G G G

G G G G

G G G G

m y q z r m x q w m x r v
m y p w m z r x p m y r u
m z p v m q u m x p y q

m y q z r m x q w m x r v
m y p w m z r x p m y r u
m z p v m q u m x p y q

I

υ






= − + − +
 + − + −


− + − +

+ − − − +
− + + − −
− − − + +

−

C

0
0

yz xz z yz xy y

yz xz z xz xy x

yz zy y xz xy x

q I p I r I r I p I q
I q I p I r I r I q I p
I r I p I q I r I q I p





− + + − 
+ − − − +


− − + + −    (8) 

B. GENERIC HYDRODYNAMIC MODEL 

For a submerged rigid body the forces and moments acting upon it can be 

modeled in the form 

 RB H Eτ τ τ τ= + + . (9) 

Eτ  is the vector of environmental forces and moments (disturbances) induced on the rigid 

body, τ  is the propulsive forces and moments induced by the actuators (thrusters) on the 

body. Hτ  is the hydrodynamic forces and moments, and is typically modeled as 

 ( ) ( ) ( )H A A gτ υ υ υ υ υ η= − − − −M C D . (10) 

AM  is the added inertia matrix, ( )A υC  is the hydrodynamic Coriolis and centripetal 

forces matrix, and ( )υD  is the potential damping matrix . ( )g η  is the restoring forces and 

moments, which depend on the pose of the body, η , where 

 1 2 1 2[ , ] ; [ , , ] ; [ , , ]T T T T Tx y zη η η η η φ θ ψ= = =   
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The matrix AM  has the following generic form 

 

11 21

12 22

u v w p q r

u v w p q r

u v w p q r
A

u v w p q r

u v w p q r

u v w p q r

X X X X X X
Y Y Y Y Y Y
Z Z Z Z Z Z
K K K K K K
M M M M M M
N N N N N N

 
 
 
  

= =   
   

 
 
  

A A
M

A A

     

     

     

     

     

      . (11) 

AM  is always a positive definite matrix for submerged bodies. The elements of this 

matrix can be thought as the partial derivative of the propulsion forces and moments with 

respect to acceleration over the axes of the body-fixed coordinate frame, for example  

 
w

XX
w
∂
∂



 . (12) 

In simpler terms, represents the added mass along the x-axis due to acceleration along the 

z-axis of the body frame, due to the volume of fluid that has to displace.  

The elements of AM  are conveniently grouped, where 11A  and 22A  contain 

elements that involve translation added mass and rotation added inertia respectively, 

whereas elements of 12A  and 21A  involve added inertia and added mass respectively, 

due to coupled motion. 

( )A υC  is an skew symmetric matrix, and it represents the added Coriolis and 

centripetal terms. 

 

3 3 11 1 12 2

11 1 12 2 21 1 22 2

0 ( )
( )

( ) ( )A

S
S S

υ υ
υ

υ υ υ υ
× − + 

=  − + − + 

A A
C

A A A A . (13) 

Substituting the values of equations (11) into equation (13), we obtain 

 

3 2

3 1

2 1

3 2 3 2

3 1 3 1

2 1 2 1

0 0 0 0
0 0 0 0
0 0 0 0

( )
0 0

0 0
0 0

A

a a
a a
a a

a a b b
a a b b
a a b b

υ

− 
 − 
 −

=  − − 
 − −
 
− −  

C

. (14) 
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where  

 

1

2

3

1

2

3

u v w p q r

v v w p q r

w w w p q r

p p p p q r

q q q q q r

r r r r r r

a X u X v X w X p X q X r
a X u Y v Y w Y p Y q Y r
a X u Y v Z w Z p Z q Z r
b X u Y v Z w K p K q K r
b X u Y v Z w K p M q M r
b X u Y v Z w K p M q N r

= + + + + +

= + + + + +

= + + + + +

= + + + + +

= + + + + +

= + + + + +

     

     

     

     

     

      . (15) 

The matrix ( )υD  models the hydrodynamic damping of the body. It is generally 

composed of the following elements  

 ( ) ( ) ( ) ( ) ( )P S W Mυ υ υ υ υ+ + +D D D D D . (16) 

( )P υD  represents the radiation-induced damping due to forced body oscillations; ( )S υD  

represents the linear skin friction due to laminar boundary layers and quadratic skin 

friction due to turbulent boundary layers; ( )W υD  represents the wave drift damping, and 

( )M υD  represents the damping due to vortex shielding. This equation can be simplified 

for underwater vehicles, and this simplification will be mentioned in the following 

section of this chapter. 

The vector ( )g η  is the vector of restoring forces and moments 

 

( )sin
( ) cos sin
( ) cos cos

( )
( ) cos sin ( ) cos sin

( )sin ( ) cos cos
( ) cos sin ( )sin

G B G B

G B G B

G B G B

W B
W B
W B

g
y W y B z W z B

z W z B x W x B
x W x B y W y B

θ
θ φ
θ φ

η
θ φ θ φ
θ θ φ
θ φ θ

− 
 − − 
 − −

=  − − + − 
 − + −
 

− − − −     (17) 

where B  represents the buoyancy force that the fluid projects over the submerged body, 

and W  is the weight of the body in air. [ ]T
B B B Br x y z  is the vector that represents 

the position of the center of buoyancy, and [ ]T
G G G Gr x y z  represents the position of 

the center of gravity relative to the body-fixed frame. 
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Finally, substituting these definitions into equations (6) and (9), the following 

expression is obtained 

 ( ) ( ) ( ) Egυ υ υ υ υ η τ τ+ + + = +M C D   (18) 

where in this expression RB A+M M M  and ( ) ( ) ( )RB Aυ υ υ+C C C . 

 

C. ASSUMPTIONS AND SIMPLIFICATIONS  

The generic equations of motion derived in the previous section can be simplified 

by using a clever choice of coordinate systems and assumptions. According to Fossen [1], 

The simplest form of the equations of motion is obtained when the body 
axes coincide with the principal axes of inertia. This implies that 

diag{ , , }
C C CC x y zI I I=I . 

For this research, it will also be assumed that the x  and y  components of both the 

center of gravity and the center of buoyancy coincide with the origin of the body-fixed 

coordinate frame [4], therefore  

 [0,0, ] ; [0,0, ]T T
G G B Br z r z= =   (19) 

Neutral buoyancy is also assumed, simplifying the restoring forces and moments ( )g η  to 

 

0
0
0

( )

0

BK

BM

g
F

F

η

 
 
 
 

=  − 
 
 
    (20) 

where ( ) cos sinBK G BF B z z θ φ= −  and ( )sinBM G BF B z z θ= − , the rigid body inertia 

matrix RBM  to 
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0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

G

G

RB
G x

G y

z

m mz
m mz

m
mz I

mz I
I

 
 − 
 

=  − 
 
 
  

M

  (21) 

and the Coriolis and centripetal rigid body matrix to 

 

0 0 0
0 0 0
0 0 0 ( ) ( ) 0

( ) 0
( ) 0

0 0

G

G

G G
RB

G G z y

G G z x

y x

mz r mw mv
mw mz r mu

m z p v m z q u
mz r mw m z p v I r I q
mw mz r m z q u I r I p
mv mu I q I p

− 
 − 
 − − − +

=  − − − 
 − − + −
 

− −  

C

  (22) 

Moreover, assuming that the vehicle has three planes of symmetry that coincide with the 

body-fixed frame axes and operates performing non-coupled motion simplifies the added 

mass and inertia matrix to 

 diag{ , , , , , }A u v w p q rX Y Z K M N= −M
        (23) 

Thus, the added Coriolis and centripetal terms become 

 

0 0 0 0
0 0 0 0
0 0 0 0

( )
0 0

0 0
0 0

w v

w u

v w
A

w v r q

w u r p

v w q p

Z w Y v
Z w X u
Y v Z w

Z w Y v N r M q
Z w X u N r K p
Y v Z w M q K p

υ

− 
 − 
 −

=  − − 
 − −
 
− −  

C

 

 

 

   

   

    . (24) 

Furthermore, the latter simplification, for underwater vehicles, simplifies the matrix of 

hydrodynamic damping to 

 | | | | | | | | | | | |

( ) diag{ , , , , , }...

... diag{ | |, | |, | |, | |, | |, | |}
u v w p q r

u u v v w w p p q q r r

X Y Z K M N
X u Y v Z w K p M q N r

υ = −

−

D

  (25) 

These assumptions yield to the following simplified equations of motion for the six 

degrees of freedom: 
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| |

| |

| |

| |

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

prop u v w u u u

prop v w u v v v

prop w u v w w w

prop x p v w z y r q

p p p

X m X u m Y vr m Z wq X u X u u

Y m Y v m Z wp m X ur Y v Y v v

Z m Z w m X uq m Y vp Z w Z w w
K I K p Y Z wv I I N M rq

K p K p p

= − − − + − − −

= − − − + − − −

= − − − + − − −

= − + − + − + +

− − −

  

  

  

    









| |

| |

( ) ( ) ( )

( ) ( ) ( )

BK

prop y q w u y x r p

q q q BM

prop z r u v y x p q

r r r

F
M I M q Z X uw I I N K rp

M q M q q F
N I N r X Y uv I I K M rp

N r N r r

= − + − + − + −

− − +

= − + − + − + −

− −

    

    





  (26) 

Although simplified, this version of the EOMs is still highly coupled and non-

linear, making the experimental identification of hydrodynamic coefficients a challenging 

task. This will be further explored in Chapter V. 
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III. SYSTEM IDENTIFICATION  

As seen in the previous chapter, the simplified EOMs (26) still counts with 

several unknown coefficients. While some of these coefficients can be measured, like the 

mass and the moment of inertia, further explored in chapter IV, the rest must be obtained 

experimentally. This chapter presents the tool that would be used in this research to 

identify the unknown hydrodynamic parameters of the EOMs. 

A. RECURSIVE LEAST SQUARE ESTIMATOR 

Given an overdetermined linear system: 

 ( ) ( ( ))y t x t= Φ Θ   (27) 

where ( ( ))x tΦ  is a known, time dependent section (regressor) and Θ  is an unknown, 

time invariant section (parameters), there is not a unique solution. Instead, a “closest” 

solution exists 

 
ˆˆ( ) ( ( ))y t x t=Φ Θ   (28) 

Θ̂  are the estimated parameters that assure that the loss function  

 21 ˆ( , ) ( ( ) ( ))
2

V t y t y tΘ = −   (29) 

is minimized. This can be found using the least squares technique [15, 18] and has the 

following solution 

 
1ˆ ( )T T y−Θ = Φ Φ Φ  . (30) 

The matrix TΦ Φ  is always positive semidefinite, ensuring that equation (29) has a 

minimum, and this minimum is unique. This solution is also known as the left pseudo-

inverse. 

It is convenient to use this solution when dealing with static systems, where all 

the information coming from the measurements is already available; but for dynamic 

systems, where new information becomes available at each time step, it is more 

convenient to use a different approach. An estimator can be generated by minimizing the 

cost function  
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2

0
ˆ ˆ( ( )) ( ( ) ( ( )) ( ))

t TJ t t x y dτ τ τΘ = Θ Φ −∫   (31) 

with respect to ˆ ( )tΘ . By computing the cost function gradient  

 
0

ˆ1 ( ( )) ˆ( ( ))( ( ) ( ( )) ( ))ˆ2
t TJ t x t t x y dτ τ τ∂ Θ

= Φ Θ Φ −
∂Θ ∫

  (32) 

and taking into consideration that the condition to minimize the cost function is  

 

ˆ( ( )) 0ˆ
J t∂ Θ

=
∂Θ  ,  (33) 

this yields  

 0 0
ˆ( ( )) ( ( )) ( ) ( ( )) ( )

t tTx t x t d t x t y dτ τ τ Φ Φ Θ = Φ  ∫ ∫ .  (34) 

Moreover, assuming that the left hand side is invertible, the following expression is 

obtained 

 

1

0 0
ˆ ( ) ( ( )) ( ( )) ( ( )) ( )

t tTt x t x t d x t y dτ τ τ
−

 Θ = Φ Φ Φ  ∫ ∫   (35) 

This solution of the least square problem allows to estimate the values of ˆ ( )tΘ  as 

new information becomes available until it converges to true values (i.e., a recursive 

implementation). The downside is that constantly inversing the integral at every time step 

is computationally expensive. This issue can be overcome by introducing the adaptive 

gain Γ   

 

1

0
( ( )) ( ( ))

t Tx t x t dτ
−

 Γ Φ Φ  ∫

  (36) 

and taking into consideration the following relationship  

 
1

0
( ) ( ( )) ( ( )) ( ( )) ( ( ))

t T Td dt x t x t d x t x t
dt dt

τ−   Γ = Φ Φ = Φ Φ    ∫  . (37) 

Furthermore, by using the chain rule 

 
1 1 1 1( ) ( ) 0 ( ) ( )N N

dt t I t t
dt

− − − −
×  Γ Γ = ⇒ = Γ Γ = ΓΓ +ΓΓ 

 

  (38) 

and combining equations (37) and (38), we obtain  

 
1 T−Γ = −ΓΓ Γ = −ΓΦΦ Γ 

 . (39) 
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This result allows the recursive computation of Γ  as new information, given by ( ( ))x tΦ  

becomes available. Additionally, differentiating equation (35) 

 
1 1ˆ ˆ( ) ( ) ( ) ( ) ( ( )) ( )t t t t x t y t− −Γ Θ +Γ Θ = Φ



  (40) 

and combining it with equation (37) yields 

 
ˆ ˆ( )TyΘ = ΓΦ −Φ Θ

  (41) 

Equations (39) and (41) combined are known as the recursive version of the Least 

Squares Estimator (RLSE). 

B. PARAMETER ESTIMATION FOR DYNAMIC SYSTEMS 

In this work, it is required to perform system identification on a system of the 

form: 

 

0 ( , ) ( , )x f x u f x u
y Cx
= +
=



  (42) 

where 0 ( , )f x u  represents the known dynamics of the system and ( , )f x u  the unknown 

dynamics. This latter part is written as the product of a known regressor ( , u)xΦ  and a 

matrix of unknown parameters Θ . One approach is to numerically differentiate the 

measurements to obtain x  so as to use the methods developed in the previous section. 

However, differentiation of digital signals increases the amount of noise existing on the 

original data, leading to inaccurate information. Thus, it is desirable to instead convert the 

dynamic system to an equivalent static system [4] in order to apply the recursive method 

mentioned in the previous section.  

Start by rewriting equation (42) as  

 0 ( , ) ( , )x ax ax f x u x u+ = + +Φ Θ   (43) 

and introducing a filtered version of the x , fx  

 f fx ax ax+ =  . (44) 

Equation (44) is basically a low-pass filter, where a  is the filtering constant. Let 

 f fz x x z x x= − → = −   . (45) 



 24 

Using equations (44) and (45), equation (43) can be written as 

 0 ( , ) ( , )z az f x u x u+ = +Φ Θ   (46) 

This first order differential equation has a unique solution  

 
( ) ( )

00 0
( ) (0) ( , ) ( , )

t tat a t a tz t e z e f x u d e x u dτ ττ τ− − − − −= + + Φ Θ∫ ∫   (47) 

Letting ( )
0 00

( , )
t a te f x u dτ τ− −Φ ∫  and ( )

0
( , )

t a t
f e x u dτ τ− −Φ Φ∫ , and assuming that the 

initial conditions of the system are  

   
equation (47) can be simplified to 

 0( ) fz t = Φ +Φ Θ   (48) 

where 0Φ  and fΦ  are just filtered version of 0 ( , )f x u  and ( , )x uΦ , respectively. 

Furthermore, using (42) and (45), equation (48) can be rewritten as  

 0f fy Cx C C− − Φ = Φ Θ   (49) 

Finally, 0Φ  and fΦ  can also be computed recursively, since 

  . (50) 

This equivalent static system allows setting a regressor to recursively estimate the vector 

of unknown parameters Θ . This has the advantage of not differentiating the measured 

velocities.  

C. PERSISTENCE OF EXCITATION 

Even for a non-excited system, parameters could be obtained using the methods 

shown above. These parameters would be found to be trivial and useless. The richness of 

the input signal is of great importance to ensure quality of the identified parameters.  

From equation (30) we see that the matrix TΦ Φ   is given by: 
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2

1 1 1

2

1 1 1

2

1 1

( 1) ( 2) ( 1) ( ) ( 1)

( 1) ( 2) ( 2) ( ) ( 2)

( 1) ( ) ( )

t t t

n n n
t t t

T
n n n

t t

n n

u k u k u k u k n u k

u k u k u k u k n u k

u k u k n u k n

+ + +

+ + +

+ +

 − − − − − 
 
 

− − − − − Φ Φ =  
 
 
 − − −
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑



 
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where u are the input signals fed to the system, k is the total number of time steps, and n 

is the number of parameters of the system. This matrix needs to be full rank to be 

invertible. This is called an excitation condition [17]. For long data sets, the sums can be 

taken from 1 to t, obtaining 
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 . (52) 

u is called persistently exciting (PE) if the matrix nC  is positive definite, in other words 

for any arbitrary vector a , 0T
na C a> .  

D. IMPLEMENTATION AND SIMULATION RESULTS 

In the pursuit of methodology verification, a simulation test was developed. Weiss 

[4] was able to identify the added mass and quadratic damping coefficients of the 

standard vLBV300 using a RLLS. These coefficients were used to generate a simulated 

velocity profile in each degree of freedom to corroborate that the RLSE approach used in 

this research converged to true values. Noise was added to the generated signal to 

improve the authenticity of the simulation and to legitimately verify the performance of 

the investigated regression. In addition to the hydrodynamic coefficients, additional 

characteristics of the system were needed to calculate the required parameters, such as the 

mass (for surge, sway and heave) and the moment of inertia with respect to the z axis (for 

yaw). This will be further explained in Section B of Chapter V. These parameters were 

also taken from Weiss report, where 20.9m kg=  and 20.90ZI kg m= .  
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First, a non PE input signal, a step input, was used to excite the simulator. The 

convergence of the estimated parameters of the RLSE can be observed in Figure 6 and 

Figure 7 shows a comparison of the simulated velocity using the assumed parameters vs. 

a simulated velocity using the estimated parameters. 

 
Figure 6.  Convergence of parameters on the surge DOF during 

 simulation with a non-PE input signal 

 
Figure 7.  Generated velocity using assumed parameters vs. simulated  

velocity used estimated parameters with a non-PE input signal 
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The parameters converged and generated a fairly good velocity response, as seen 

in Figure 6 and Figure 7, respectively. However, comparing the estimated parameters 

with the assumed ones revealed a large error in most of the channels, as seen in Table 3. 

In other words, even though the parameters converged, they did not converge to the true 

values. 

Table 3.   Assumed hydrodynamic coefficients vs. coefficients obtained using 
RLSE using a non-PE input signal 

 Assumed Value Estimated Value Units 
Rel. Err. ( )/x x∆  

u uX
 

-27.7411 -25.4321 kg/m  8.32 % 

uX
  -13.5778 -40.5778 kg  195.70 % 

v vY
 

-50.6868 -38.7742 kg/m  23.50 % 

vY
  -27.9347 -129.5184 kg  363.64 % 

 

 

The same procedure was repeated using a series of varying step commands in an 

effort to persistently excite the system. Figure 8 and Figure 9 were generated using the 

estimated parameters for this case. 
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Figure 8.  Convergence of parameters on the surge DOF  

during simulation  

 
Figure 9.  Generated velocity using assumed parameters vs. simulated velocity 

used estimated parameters  

Figure 8 shows a fast convergence and a bounded stability at the steady state of 

the estimated parameters during the simulation of the velocity profile of the surge DOF. 

The simulation was carried out with the rest of the channels, and the results are 
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summarized in Table 4. The coefficients obtained by the RLSE are close to the assumed 

values, as reflected by the relative error.  

Table 4.   Assumed hydrodynamic coefficients vs. coefficients obtained using 
RLSE a PE input signal 

 Assumed Value Estimated Value Units 
Rel. Err. ( )/x x∆  

u uX
 

-27.7411 -27.4633 kg/m  1.00 % 

uX
  -13.5778 -13.3967 kg  1.33 % 

v vY
 

-50.6868 -50.3438 kg/m  0.68 % 

vY
  -27.9347 -27.4153 kg  1.86 % 

w wZ
 

-64.5970 -63.0540 kg/m  2.39 % 

wZ
  -46.3258 -45.6039 kg  1.56 % 

r rN
 

-2.1709 -2.1709 2 2kg m /rad  0.25 % 

rN
  -3.1023 -3.0935 2kg m /rad  0.30 % 
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IV. QUADRIFILAR PENDULUM 

In Section A of Chapter II, the dynamics of a rigid body were derived with respect 

to some of the properties of the body, such as the mass ( m ) and the inertia tensor ( I ). 

While the mass of an object is a property fairly easy to identify with the right 

instrumentation, this is not the case for the inertia tensor.  

A. THEORY 

The inertia tensor is a matrix composed by the moments of inertia (main diagonal 

values) and the products of inertia (off diagonal) of the body about a chosen coordinate 

frame ( 0 ). From Fossen [1]: 

 

0 0 0;
x xy xz

T
yx y xy

zx zy z

I I I
I I I
I I I

 − −
 − − = 
 − − 

I I I

  (53) 

All the individual elements of the inertia matrix can be identified performing the 

following computation: 

 

2 2

2 2

2 2
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ρ ρ

ρ ρ

ρ ρ

= + =

= + =

= + =

∫ ∫
∫ ∫
∫ ∫   

where ρ  is the density of the body and V  is the volume.  

Computing these parameters is an easy task for simple geometrically shaped 

bodies, but as the shape grows in complexity, so does the difficulty of this calculation. 

Furthermore, engineering structures are usually composed of several different materials, 

each with a density of its own. 

CAD models are one way to overcome this challenge, but require having access to 

the software and being skilled enough to draw complex models. In addition, individual 

components of the body might be more complex than the way they are modeled using 

this software, leading to inaccuracies on the result. Finally, the objects for which these 
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properties must be determined in this research undergo configuration changes frequently, 

making the CAD modeling approach even less applicable. 

Several techniques exist for the experimental determination of the moments of 

inertia [8], including multi-filar pendulums, as used in this research. Genta [7] uses a 

linearization and the Lagrange approach to calculate the natural frequency (λ ) of a multi-

filar pendulum in the θ  degree of freedom (torsion). 

 

1 2eq

eq

m gR R
I hθλ =

  (54) 

where eqm  is the combined mass of the object, tray and wires, g  is the gravity and 

1 2andR R  are the radii of the circles that circumscribe the wire supports in the ceiling and 

the tray respectively. The period between oscillations is computed as: 

 

2T π
λ

=
  (55) 

Combining equations (54) and (55), yields 

 
1 2 2

24
eq

eq

m gR R
I T

hπ
=

 . (56) 

Hence, the moment of inertia can be calculated by measuring the period of the 

oscillations. Furthermore, the moment of inertia of an object, OI  placed on top of the 

pendulum can be calculated by subtracting the moment of inertia of the pendulum, PI , 

from the equivalent moment of inertia. In other words 

 O eq PI I I= −  . (57) 

This holds true as long as the horizontal displacement of the pendulum is small enough to 

be considered negligible. 

B. EXPERIMENTAL SETUP 

A quadrifilar pendulum consists of a platform or a tray suspended in the air by 

four wires attached to the celling, as seen in Figure 10. 
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Figure 10.  Quadrifilar pendulum during trials with the THAUS AUV. 

For this setup, 1 2 0.47 mR R= = , the weight of the tray 9.8 kgTm =  and the 

length of the lines 4.23mh = . A small initial excitation was induced on the platform to 

generate oscillations. The amount of time for 20 complete oscillations was measured in 

order to reduce the measurement error. Using this method, the moment of inertia of the 

pendulum was found, 22.1970kg mPI = . To verify the validity of this experiment, the 

procedure was repeated with an aluminum tube on top of the pendulum, since its 

moments of inertia were easy to calculate. The equivalent moment of inertia was 

calculated as 22.8590kg meqI = , and the resulting moment of inertia of the aluminum 

tube was calculated as 20.6620kg mOI = . 

The solution of the moment of inertia of a hollow cylinder is  
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2 2 2

12 4y z
L R rI I m

 +
= = + 

    (58) 

where  are the outer and inner diameter respectively, and L  is the length of the 

cylinder. The properties of the aluminum tube used for this experiment are listed in Table 

5. 

Table 5.   Properties and dimensions of the aluminum  
tube used for verification. 

Parameter Value Units 
m  2.3800 kg 
L  1.8200 m 
R  0.0254 m 
r  0.0219 m 

 

The calculated moment of inertia of the tube using equation (58) was 
20.6576kg my zI I= =   

The moment of inertia calculated using the pendulum had a difference of 0.67% 

with the true moment of inertia of the body. 

C. EXPERIMENTAL RESULTS 

The same procedure was carried out with the THAUS AUV and REMUS AUV to 

capture the moment of inertia about each plane about their center of gravity. Prior to this 

test, the vehicles were weighted to identify their mass. The results are shown in Table 6. 

Table 6.   Mass properties of the vehicles 

Vehicle Mass Units 
THAUS  38.10 kg 
REMUS 36.20 Kg 

  

In Section C of Chapter II it was assumed that the body planes of symmetry 

coincide with the axes of the body-fixed frame. This assumption allows neglecting the 
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off-diagonal coefficients of the inertia tensor. The results are listed in Table 7 and Table 

8, respectively.  

Table 7.   Calculated moment of inertia of the THAUS AUV 

Parameter Value Units 
xI  1.7428 2kg m  
yI  

2.2278 2kg m  
zI  1.4046 2kg m  

Table 8.   Calculated moment of inertia of the REMUS 100 ROV 

Parameter Value Units 
xI  0.2777 2kg m  
yI  

5.4133 2kg m  
zI  5.4133 2kg m  
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V. SINGLE CHANNEL EXCITATION  

Hovering underwater vehicles, like the THAUS AUV, have the advantage of 

being able to perform uncoupled motion on several degrees of freedom using one or more 

thrusters. This can be used to estimate the hydrodynamic coefficients corresponding to 

the channels that are possible to excite individually. This chapter explains how the system 

identification techniques proposed in Chapter III can be used in order to do so. 

A. PREVIOUS WORK AT NPS 

Weiss’s [4] work set the foundations for the present research. In his work, an 

accurate model of the thrust generated by the propellers of the THAUS AUV was 

identified:  

 20.006736 0.03366 0.0684Thrust PWM PWM= − + .  (59) 

This model is used extensively in the development of this chapter. 

Several identification techniques were tested in order to perform real-time 

identification of the hydrodynamic coefficients of the equations of motion of the 

SeaBotix vLBV300. A Gradient Estimator (GE), Neural Network (NN), Bayesian 

filtering and Recursive Linear Least Squares (RLLS) estimation were studied, concluding 

that the GE and Bayesian filtering were not suitable or not applicable for this 

identification task. A simple NN that was able to map the thruster force in the surge DOF 

was created for both the simulator and the vLBV300. Next, a more complicated NN was 

set to capture the input-output relations of four DOFs: surge, sway, heave and yaw. This 

last NN was not able to capture enough data to accomplish its objective due to limitations 

of the experimental setup. Finally the RLLS was proven capable to estimate the 

parameters of the regressor. 

The VICON cameras system was used to track the motion of the vLBV300, 

having the advantage of accurate tracking measurements, but was restricted to a small 

testing space.  
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For the identification method explained in this chapter, data from the onboard INS 

was used to identify the hydrodynamic parameters. This is a more versatile method, 

allowing the test to be carried almost everywhere, but sacrificing the accuracy of the 

VICON system. 

B. METHODOLOGY 

In Section C of Chapter II a simplified version of the equations of motion for 

underwater vehicles was developed. This parameterized governing equation of the surge 

motion is shown below 
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 . (60) 

It is observable that even a simplified version, as the one shown above, is still highly 

coupled, making the parameter identification task more difficult. 

A method to get around this issue is exciting individual channels, assuring little or 

no excitation in the remaining possible motions, allowing the coupled parameters to be 

neglected. The result is an equation of the form 
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  (61) 

This has the form of equation (27), ( ) ( ( ))y t x t= Φ Θ  (if u  can be measured directly or 

can be converted into an equivalent static system, as demonstrated in Section B of 

Chapter III), where  
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The vectored thruster design of the THAUS AUV allows this (62) to be possible 

in five degrees of freedom: surge, sway, heave, roll (limited) and yaw.  
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Due to the thruster configuration of the platform, the pitch DOF cannot be directly 

excited, but if the surge and heave DOFs are excited simultaneously, it is also possible to 

excite pitch due to the coupled nature of the motion [4]. Assuming that the unknown 

parameters of the surge and heave DOFs have been fully identified and the coupled 

motion is being induced only in the pitch DOF, by analyzing equation (64) 
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a regressor can be set, in terms of equation (50), as: 
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  (65) 
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C. SINGLE CHANNEL EXCITATION APPLIED TO THE THAUS AUV 

By recording the velocity of the vehicle in each of the individually excited 

channels using the estimated states processed by the onboard INS, it is possible to apply 

the procedure explained before on the THAUS vehicle in order to estimate the 

hydrodynamic coefficients. 

Three different damping models were compared using the gathered data: linear 

damping, quadratic damping and linear and quadratic damping. The Root Mean Square 

Error (RMSE) was calculated for each model. Results of this comparison for the surge 

channel are shown in Table 9 and a graphical comparison between the measured velocity 

and the velocity calculated with the identified parameters are shown in Figure 11, Figure 

12 and Figure 13. 

Table 9.   Comparison between damping models for surge 

Damping Model 
uX
  uX  u uX

 
RMSE 

Linear and Quadratic -94.8422 -27.9253 -72.7159 0.0020 
Linear -100.7447 -61.5144 -- 0.0101 
Quadratic -91.7507 -- -132.2426 0.0015 

 
Figure 11.  Measured velocity vs. calculated velocity using a linear and quadratic 

damping model 
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Figure 12.  Measured velocity vs. calculated velocity  

using a quadratic damping model 

 

 
Figure 13.  Measured velocity vs. calculated velocity  

using a linear damping model 
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In the case of the surge channel, the quadratic damping had the lowest RMSE. 

The same procedure was used in the rest of the degrees of freedom. The quadratic 

damping model was found to be the best fit for the sway and yaw channels as well. In the 

case of the heave channel, the linear quadratic model had the least RMSE. The estimated 

parameters for the four degrees of freedom are summarized in Table 10. The convergence 

of the estimated parameters using a quadratic damping model can be seen in Figure 14. 

 
Figure 14.  Convergence of parameters on the surge DOF using 

 a quadratic damping model 
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Table 10.   Hydrodynamic Coefficients of the THAUS AUV Using the Single 
Channel Excitation Technique 

Parameter Value Units 
u uX

 
-132.2436 kg m  

uX
  -91.7507 kg  

v vY
 

-357.8624 kg m  
vY
  -205.0403 kg  
wZ  -85.9259 kg s  
wZ
  -194.9859 kg  
r rN

 
-5.8274 2 2kg m /rad  

rN
  -2.4765 2kg m /rad  
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VI. FREE DECAY PENDULUM EXPERIMENT 

As mentioned in Chapter V, hovering vehicles can excite several degrees of 

freedom individually. This is not possible for vehicles such as the REMUS 100 AUV, 

where surge is the only DOF that can be excited independently, while the rest of the 

degrees of freedom are coupled. However, with the developed free decay pendulum 

experimental setup it is possible to constrain the direction of the vehicle motion to a 

single degree of freedom, making it possible to estimate the associated hydrodynamic 

coefficients for the channels that cannot normally be excited. 

A. EXPERIMENTAL SETUP 

Eng et al. [6] first proposed the use of the free decay motion of the pendulum and 

a scale model of a vehicle to estimate the hydrodynamic coefficients of an underwater 

vehicle. Based on this work, an experimental setup was developed at NPS to apply the 

technique to NPS platforms for model learning. This experimental setup was designed 

(outside the scope of this research) and manufactured. The pendulum setup used in this 

research allows mounting THAUS and REMUS directly.  

1. Hardware and Setup 

The experimental setup consisted of two aluminum tubes joined with a pressure 

clamp and pinned to an aluminum base attached to the ceiling. This setup restricted the 

pendulum motion to a single degree of freedom. More details about the properties of this 

setup can be found in Table 11. A Pixhawk Px4 autopilot was attached to the pole of the 

pendulum, assuring that the device was aligned with the plane of motion of the pendulum 

in order to get measurements in the desired DOF (without coupling with the other DOFs). 

Data from its Inertial Measurements Unit (IMU) was used in order to measure the 

orientation and angular velocity of the pendulum during trials. Figure 15 showed the 

configuration of the pendulum used in this test. 
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Figure 15.  Pendulum Setup  

Due to the low speed and damped oscillations achieved in the first trials, 

additional weight was added to the bottom tube of the pendulum for the sake of 

prolonging the oscillation of the pendulum on the heavily damped degrees of freedom of 

the vehicles. 

This pendulum system was attached to the ceiling above the water test tank in the 

CAVR. Mounts for both the vLBV300 and the REMUS vehicles were 3D printed in 

order to attach the mentioned vehicles to the pendulum.  
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Figure 16.  Mounts used to attach the THAUS AUV (left) and 

the REMUS AUV (right) to the pendulum. 

2. Equations of Motion 

The equations of motion corresponding to this set up were derived using a 

Newtonian approach; a free body diagram of the pendulum is shown in Figure 17. 

 
Figure 17.  Free Body Diagram of the Pendulum 

m  is the combined mass of both the pendulum and the vehicle, B  is the buoyancy force 

acting on the vehicle, and HF  is the sum of the hydrodynamic forces acting on the 
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vehicle due to its motion (i.e., due to damping and the added mass). Assuming that the 

excited degree of freedom of the vehicle mounted in the pendulum is surge, as seen in 

Figure 17, a Newtonian approach is used to model the dynamics of the pendulum: 

 sin sin Hmu B Mg Fθ θ= − − . (66) 

The hydrodynamic force acting on the vehicle is modeled as 

 . (67) 

Keeping with the nomenclature used in Chapter II, uX


, uX  and u uX  is the added mass, 

linear damping and quadratic damping coefficients, respectively, corresponding to the 

surge DOF. Substituting (67) into (66) leads to 

 ( ) ( )sinu u u um X u B Mg X u X u uθ− = − + +


   (68) 

Moreover, the constrains of the pendulum only allow one degree of freedom motion, 

which is characterized in terms of the angle, θ , thus the following equivalences 

 ;u L u Lθ θ= = 

   (69) 

Substituting (69) into (68) and solving for the angular acceleration leads to 
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Equation (70) has a similar form to equation (27), which can be written in terms of the 

regressor and parameter matrix: ( ) ( ( ))y t x t= Φ Θ ,  
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This allows us to use the same regression tools to identify the vector of unknown 

parameters presented in Chapter III and used in Chapter V. 
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3. Methodology  

An initial angle of approximately 22 degrees was given to the pendulum at the 

start of the trials to induce the oscillations.  

Table 11.   Properties of the Components of the Pendulum 

Parameter Value Units Description 
L  3.66 m  Length of the pendulum 

pm  
5.93 kg  Mass of the pendulum 

am  4.62 kg  Additional mass 

 

The pendulum was excited first without any vehicle mounted, in order to calculate 

the added mass of the submerged portion of the pole. Table 11 summarizes the properties 

of the pendulum required for the calculation of the hydrodynamic coefficients. The result 

obtained was 4.1996 kgθΘ = −


. This coefficient was later subtracted to obtain the added 

mass of the vehicles. 

B. THAUS AUV RESULTS 

The THAUS INS was used to gather the required orientation and angular velocity 

information. As described in Chapter V, three different models of damping were used and 

compared. The results of this comparison for the surge direction are shown in Table 12 

and a graphical comparison between the calculated orientation and the measured 

orientation is shown in Figure 18, Figure 19 and Figure 20, for each of the respective 

damping models. 

Table 12.   Comparison between damping models for the surge DOF 

Damping Model 
uX
  uX  u uX

 
RMSE 

Linear and Quadratic -87.0553 -45.7734 -0.6784 0.0612 
Linear -87.1206 -45.9694 -- 0.0610 
Quadratic -110.6523 -- -3.0168 0.1894 
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Figure 18.  Measured vs. calculated orientation of the THAUS AUV with a linear 

and quadratic damping model in the surge DOF 

 
Figure 19.  Measured vs. calculated orientation of the THAUS AUV  

with a linear damping model in the surge DOF 
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Figure 20.  Measured vs. calculated orientation of the THAUS AUV  

with a quadratic damping model in the surge DOF 

As seen in Table 12 even when modeled with linear and quadratic damping, the 

linear damping dominated over the quadratic due to the slow motion of the pendulum. 

Figure 21 shows the velocity of the THAUS AUV during this test, obtained by 

multiplying the measured angular velocity by the length of the pivot point to the center of 

mass of the vehicle. The maximum velocity registered was 0.3515 m/s. 
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Figure 21.  Velocity of the THAUS AUV during trials in the surge DOF 

The results of the identification task for the THAUS AUV are summarized in 

Table 13. Even though these results seem good, the THAUS AUV operates at a faster 

velocity regime, more related to the velocities at which the SCE test was carried out. 

Table 13.   Hydrodynamic Coefficients of the THAUS AUV  
Using the Free Decay Pendulum Technique 

Parameter Value Units 
uX  -45.7734 kg s  
uX
  -87.1206 kg  

vY  -93.8563 kg s  
vY
  -280.7926 kg  
wZ  -49.0414 kg s  
wZ
  -161.1732 kg  

 

C. REMUS AUV RESULTS 

The REMUS vehicle tested here does not have an INS. Consequently, a different 

method was needed to measure the orientation and angular velocity of the pendulum. 
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Data from the IMU of the Pixhawk Px4 autopilot was used just as the INS data for the 

THAUS AUV. 

A particular property of the REMUS AUV is the considerable difference on its 

geometry between its principal planes of symmetry. While the xy-plane and the xz-plane 

are very similar, having the semi-elliptical shape given by the Myring hull profile 

equations for a minimal drag coefficient given a length/diameter ratio [2], the yz-plane 

has a circular profile. Due to this fact, the results corresponding to the surge DOF are 

expected to be significantly different from the results in the sway and heave DOFs.  

The results of this test in the surge direction are shown in Table 14 as well as the 

graphical comparison in Figure 22, Figure 23 and Figure 24 for the different damping 

models 

Table 14.   Comparison between damping models for surge DOF of the REMUS 
AUV 

Damping Model 
uX
  uX  u uX

 
RMSE 

Linear and Quadratic -39.4273 -7.0972 -18.9418 0.1141 
Linear -39.8851 -13.2476 -- 0.1151 
Quadratic -39.8988 -- -36.1892 0.1539 
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Figure 22.  Measured vs. calculated orientation of the REMUS AUV with a  

linear and quadratic damping model in the surge DOF 

 
Figure 23.  Measured vs. calculated orientation of the REMUS AUV  

with a linear damping model in the surge DOF 
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Figure 24.  Measured vs. calculated orientation of the REMUS AUV with a 

quadratic damping model in the surge DOF 

Figure 25 shows the velocity vs. time of the REMUS AUV during the surge DOF 

test. The maximum speed achieved by the vehicle in this trial was 0.5099 m/s. 

 
Figure 25.  Velocity of the REMUS AUV during trials in the surge DOF 
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As seen for the THAUS AUV, the linear and quadratic damping model dominated 

over the other two. However, the motion in the surge oscillated significantly more than 

the other DOFs, as will be seen later in this section. 

As was also observed for the FDP test of the THAUS AUV, the speed at which 

this test was carried out for REMUS AUV was not close to the speed at which the vehicle 

operates (up to 2.3 m/s [19]). Hence, the model obtained using this method is not suitable 

for real operations of the REMUS. 

The same methodology was follow for the sway DOF. The comparison between 

models is summarized in Table 15, Figure 26, Figure 27 and Figure 28. 

Table 15.   Comparison between damping models for sway  
DOF of the REMUS AUV 

Damping Model 
vY
  vY  v vY

 
RMSE 

Linear and Quadratic -178.3699 -93.4415 -14.6473 0.0809 
Linear -178.7444 -96.8761 -- 0.0809 
Quadratic -345.9049 -- -285.5404 0.2466 
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Figure 26.  Measured vs. calculated orientation of the REMUS AUV with a linear 

and quadratic damping model in the surge DOF 

 
Figure 27.  Measured vs. calculated orientation of the REMUS AUV with a linear 

damping model in the surge DOF 
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Figure 28.  Measured vs. calculated orientation of the REMUS AUV with a 

quadratic damping model in the surge DOF 

Figure 29 shows the velocity over time of the REMUS AUV in the sway DOF 

during testing. The maximum speed achieved in this test was 0.3073 m/s. 

 
Figure 29.  Velocity of the REMUS AUV during trials in the sway DOF 

As mentioned before, the motion on the sway and heave DOFs of the REMUS 

AUV is coupled to the motion of the surge DOF. Therefore, small speeds are expected in 
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the coupled motions. Taking this into consideration, it is expected that the models 

obtained using the FDP method will work for the sway and heave DOFs. 

The results that best fitted the velocity profile found on this test are summarized 

in Table 16. 

Table 16.   Hydrodynamic Coefficients of the REMUS AUV Using the Free 
Decay Pendulum Technique 

Parameter Value Units 
uX   -7.0972 kg s  
u uX

 
-18.9418 kg m  

uX
  -39.8851 kg  

vY  -96.8761 kg s  
vY
  -178.7444 kg  
wZ  -91.1800 kg s  
wZ
  -139.1402 kg  
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VII. COMPARISON OF METHODS 

The two identification methods used in this thesis, Single Channel Excitation 

(SCE) and Free Decay Pendulum (FDP), were used in the THAUS AUV in order to 

identify the hydrodynamic coefficients of the vehicle. In this chapter, the results of these 

two methods will be compared and discussed. The coefficients that best fit the velocity 

profile of the vehicle in their respective tests are summarized in Table 17. 

Table 17.   Summary of identified parameters of the THAUS AUV  
using the SCE and the FDP test 

Parameter SCE FDP Units 
uX  -- -45.7734 kg s  
u uX

 
-132.2436 -- kg m  

uX
  -91.7507 -87.1206 kg  

vY  -- -93.8563 kg s  
v vY

 
-357.8624 -- kg m  

vY
  -205.0403 -280.7926 kg  
wZ  -85.9259 -49.0414 kg s  
w wZ

 
-- -- kg m  

wZ
  -194.9859 -161.1732 kg  
r rN

  
-5.8274 -- 2 2kg m /rad  

rN
  -2.4765 -- 2kg m /rad  

 

Since the identification task was carried out on this vehicle without any prior 

knowledge of the parameters of the plant, is not possible to compare the results to an 

exact result. 

One of the possible reasons for the discrepancy in the result was the lack of 

Persistence of Excitation (PE) in the FDP test. PE is a very important consideration in 

order to guarantee convergence of the parameters to the true value, as proven in Section 

D of Chapter III where the result using a step input was compared to the result having a 
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series of steps. While both results simulated a similar velocity profile to the original 

velocity, the identified parameters did not converge to the true values. As a consequence, 

the results from the SCE are expected to be more accurate. 

Another possible reason was that the speed achieved by the tested vehicles during 

the FDP test was small. The damping in the system is sensitive to the speed. Linear 

damping is typically associated with laminar flow (low-speed), whereas quadratic 

damping is associated with higher speed operations. For the FDP test, the speeds were 

low, and thus it was expected that the linear damping term dominated. However, for the 

SCE test, vehicle speeds were higher, and as a consequence the quadratic damping term 

dominated. Since the vehicle is operated in the manner that is consistent with the SCE 

method, again those results were expected to be more accurate. 

In the case of the REMUS AUV, the same was expected for the results on the 

surge DOF, since the speeds at which it operates are even higher than the THAUS 

operational speeds. However, low speeds are expected for the sway and heave DOFs, 

since these are coupled. Therefore, the models obtained using this method in the sway 

and heave DOFs are expected to work accurately. 
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VIII. CONCLUSION  

A. SUMMARY 

The objective of this research was the identification of the hydrodynamic 

parameters of the simplified version of the EOM for the THAUS AUV and the REMUS 

AUV. A Recursive Least Square Estimator (RLSE) was used in conjunction with a 

parameter estimation technique in both tests used in this research in order to identify the 

unknown coefficients. 

The inertia properties of the vehicles were identified using a quadrifilar 

pendulum. The relation between the natural frequency of the pendulum and its moment of 

inertia was used to calculate the later by measuring the period between oscillations and 

latter subtracting it from the moment of inertia obtained when the vehicle was on top. 

This was repeated for the three principal planes of each vehicle. 

The Single Channel Excitation (SCE) was used in the THAUS AUV due to its 

ability to excite individual channels at the time. By recording the velocity over time of 

the vehicle and feeding this information to the regression tools mentioned above, the 

hydrodynamic parameters for each tested degree of freedom (surge, sway, heave and 

yaw) were successfully identified. 

The Free Decay Pendulum (FDP) was used in both the THAUS AUV and the 

REMUS AUV. The identified parameters using this technique differ from the ones 

identified using the SCE test on the THAUS AUV. Similar results were obtained during 

simulation of the regression tools, where the results of a Persistently Exciting (PE) input 

were compared to the results of a non-PE input. This led to conclude that the motion 

produced by the free decay oscillation of the pendulum is not a PE input. Nevertheless, 

the resulting model can be used in controllers designed to operate in a low velocity 

regime. 
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B. FUTURE WORK 

Modeling is an arduous task, but it is required for the design of precise 

controllers, capable of govern the controlled AUV under complex missions. A full model 

of the dynamics of the THAUS AUV is required in order to increase its performance 

under complex tasks. Hence, the SCE test must be carried on in the roll and pitch DOFs 

in order to complete the identification task in the vehicle. Later, a verification of the full 

coupled model must be performed. 

The FDP test was concluded to not have a PE input that would lead to the 

identification of the true hydrodynamic coefficients. However, an external excitation 

could be introduced in this experimental setup, and as long as this excitation is quantified, 

regression methods can be used to identify the hydrodynamic parameters. Moreover, the 

addition of a torsional pendulum would make possible the identification of vehicles like 

the REMUS AUV, without the capability of individual channel excitation, in the three 

rotational DOFs (roll, pitch and yaw). 
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APPENDIX . SIMULINK MODELS 

 
Figure 30.  Parameter estimator and recursive least squares estimator diagram. 

 
Figure 31.  Recursive least square diagram. 
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Figure 32.  Velocity response simulator for the SCE test 

 
Figure 33.  Velocity response simulator for the FDP test 
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